Random Sum-Product Forests with Residual Links

08/08/2019 ∙ by Fabrizio Ventola, et al. ∙ 0

Tractable yet expressive density estimators are a key building block of probabilistic machine learning. While sum-product networks (SPNs) offer attractive inference capabilities, obtaining structures large enough to fit complex, high-dimensional data has proven challenging. In this paper, we present random sum-product forests (RSPFs), an ensemble approach for mixing multiple randomly generated SPNs. We also introduce residual links, which reference specialized substructures of other component SPNs in order to leverage the context-specific knowledge encoded within them. Our empirical evidence demonstrates that RSPFs provide better performance than their individual components. Adding residual links improves the models further, allowing the resulting ResSPNs to be competitive with commonly used structure learning methods.



There are no comments yet.


page 6

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.