Random points are good for universal discretization

01/29/2023
by   F. Dai, et al.
0

Recently, there was a big progress in studying sampling discretization of integral norms of finite dimensional subspaces and collections of such subspaces (universal discretization). It was established that sampling discretization results are useful in a number of applications. In particular, they turn out to be useful in sampling recovery. Typically, recent sampling discretization results provide existence of good points for discretization. The main goal of this paper is to show that in the problem of universal discretization the independent random points on a given domain that are identically distributed according to the given probabilistic measure provide good points with high probability. Also, we demonstrate that a simple greedy type algorithm based on good points for universal discretization provide good recovery in the square norm.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset