Random Hash Code Generation for Cancelable Fingerprint Templates using Vector Permutation and Shift-order Process

05/21/2021
by   Sani M. Abdullahi, et al.
11

Cancelable biometric techniques have been used to prevent the compromise of biometric data by generating and using their corresponding cancelable templates for user authentication. However, the non-invertible distance preserving transformation methods employed in various schemes are often vulnerable to information leakage since matching is performed in the transformed domain. In this paper, we propose a non-invertible distance preserving scheme based on vector permutation and shift-order process. First, the dimension of feature vectors is reduced using kernelized principle component analysis (KPCA) prior to randomly permuting the extracted vector features. A shift-order process is then applied to the generated features in order to achieve non-invertibility and combat similarity-based attacks. The generated hash codes are resilient to different security and privacy attacks whilst fulfilling the major revocability and unlinkability requirements. Experimental evaluation conducted on 6 datasets of FVC2002 and FVC2004 reveals a high-performance accuracy of the proposed scheme better than other existing state-of-the-art schemes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro