Railway Track Specific Traffic Signal Selection Using Deep Learning

12/17/2017 ∙ by S. Ritika, et al. ∙ 0

With the railway transportation Industry moving actively towards automation, accurate location and inventory of wayside track assets like traffic signals, crossings, switches, mileposts, etc. is of extreme importance. With the new Positive Train Control (PTC) regulation coming into effect, many railway safety rules will be tied directly to location of assets like mileposts and signals. Newer speed regulations will be enforced based on location of the Train with respect to a wayside asset. Hence it is essential for the railroads to have an accurate database of the types and locations of these assets. This paper talks about a real-world use-case of detecting railway signals from a camera mounted on a moving locomotive and tracking their locations. The camera is engineered to withstand the environment factors on a moving train and provide a consistent steady image at around 30 frames per second. Using advanced image analysis and deep learning techniques, signals are detected in these camera images and a database of their locations is created. Railway signals differ a lot from road signals in terms of shapes and rules for placement with respect to track. Due to space constraint and traffic densities in urban areas signals are not placed on the same side of the track and multiple lines can run in parallel. Hence there is need to associate signal detected with the track on which the train runs. We present a method to associate the signals to the specific track they belong to using a video feed from the front facing camera mounted on the lead locomotive. A pipeline of track detection, region of interest selection, signal detection has been implemented which gives an overall accuracy of 94.7 route covering 150km with 247 signals.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 4

page 6

page 8

page 9

page 11

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.