RAILS: A Robust Adversarial Immune-inspired Learning System

12/18/2020 ∙ by Ren Wang, et al. ∙ 0

Adversarial attacks against deep neural networks are continuously evolving. Without effective defenses, they can lead to catastrophic failure. The long-standing and arguably most powerful natural defense system is the mammalian immune system, which has successfully defended against attacks by novel pathogens for millions of years. In this paper, we propose a new adversarial defense framework, called the Robust Adversarial Immune-inspired Learning System (RAILS). RAILS incorporates an Adaptive Immune System Emulation (AISE), which emulates in silico the biological mechanisms that are used to defend the host against attacks by pathogens. We use RAILS to harden Deep k-Nearest Neighbor (DkNN) architectures against evasion attacks. Evolutionary programming is used to simulate processes in the natural immune system: B-cell flocking, clonal expansion, and affinity maturation. We show that the RAILS learning curve exhibits similar diversity-selection learning phases as observed in our in vitro biological experiments. When applied to adversarial image classification on three different datasets, RAILS delivers an additional 5.62 without appreciable loss of accuracy on clean data.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.