Radiomic feature selection for lung cancer classifiers

03/16/2020
by   Hina Shakir, et al.
0

Machine learning methods with quantitative imaging features integration have recently gained a lot of attention for lung nodule classification. However, there is a dearth of studies in the literature on effective features ranking methods for classification purpose. Moreover, optimal number of features required for the classification task also needs to be evaluated. In this study, we investigate the impact of supervised and unsupervised feature selection techniques on machine learning methods for nodule classification in Computed Tomography (CT) images. The research work explores the classification performance of Naive Bayes and Support Vector Machine(SVM) when trained with 2, 4, 8, 12, 16 and 20 highly ranked features from supervised and unsupervised ranking approaches. The best classification results were achieved using SVM trained with 8 radiomic features selected from supervised feature ranking methods and the accuracy was 100 nodule classification can be achieved by training any of the SVM or Naive Bayes with a fewer radiomic features. A periodic increment in the number of radiomic features from 2 to 20 did not improve the classification results whether the selection was made using supervised or unsupervised ranking approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro