Race, Gender and Beauty: The Effect of Information Provision on Online Hiring Biases

01/16/2020 ∙ by Weiwen Leung, et al. ∙ 0

We conduct a study of hiring bias on a simulation platform where we ask Amazon MTurk participants to make hiring decisions for a mathematically intensive task. Our findings suggest hiring biases against Black workers and less attractive workers and preferences towards Asian workers female workers and more attractive workers. We also show that certain UI designs including provision of candidates information at the individual level and reducing the number of choices can significantly reduce discrimination. However provision of candidates information at the subgroup level can increase discrimination. The results have practical implications for designing better online freelance marketplaces.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.