Query Tracking for E-commerce Conversational Search: A Machine Comprehension Perspective
With the development of dialog techniques, conversational search has attracted more and more attention as it enables users to interact with the search engine in a natural and efficient manner. However, comparing with the natural language understanding in traditional task-oriented dialog which focuses on slot filling and tracking, the query understanding in E-commerce conversational search is quite different and more challenging due to more diverse user expressions and complex intentions. In this work, we define the real-world problem of query tracking in E-commerce conversational search, in which the goal is to update the internal query after each round of interaction. We also propose a self attention based neural network to handle the task in a machine comprehension perspective. Further more we build a novel E-commerce query tracking dataset from an operational E-commerce Search Engine, and experimental results on this dataset suggest that our proposed model outperforms several baseline methods by a substantial gain for Exact Match accuracy and F1 score, showing the potential of machine comprehension like model for this task.
READ FULL TEXT