Quasi-optimal and pressure robust discretizations of the Stokes equations by moment- and divergence-preserving operators

02/26/2020
by   Christian Kreuzer, et al.
0

We approximate the solution of the Stokes equations by a new quasi-optimal and pressure robust discontinuous Galerkin discretization of arbitrary order. This means quasi-optimality of the velocity error independent of the pressure. Moreover, the discretization is well-defined for any load which is admissible for the continuous problem and it also provides classical quasi-optimal estimates for the sum of velocity and pressure errors. The key design principle is a careful discretization of the load involving a linear operator, which maps discontinuous Galerkin test functions onto conforming ones thereby preserving the discrete divergence and certain moment conditions on faces and elements.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset