Quantum Terrorism: Collective Vulnerability of Global Quantum Systems

01/25/2019
by   N. F. Johnson, et al.
George Washington University
0

The major imminent investments in quantum technologies will bring concepts like a global quantum Internet and quantum Internet-of-Things, closer to reality. Our findings reveal a new form of vulnerability that will enable hostile groups of quantum-enabled adversaries to inflict maximal disruption on the global quantum state in such systems. These attacks will be practically impossible to detect since they introduce no change in the Hamiltonian and no loss of purity; they require no real-time communication; and they can be over within a second. We also predict that such attacks will be amplified by the statistical character of modern extremist, insurgent and terrorist groups. A countermeasure could be to embed future quantum technologies within redundant classical networks.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 2

page 7

05/05/2021

Vulnerability of Blockchain Technologies to Quantum Attacks

Quantum computation represents a threat to many cryptographic protocols ...
07/28/2021

Quantum Technologies in the Telecommunications Industry

Quantum based technologies have been fundamental in our world. After pro...
01/12/2021

Quantum Internet- Applications, Functionalities, Enabling Technologies, Challenges, and Research Directions

The advanced notebooks, mobile phones, and internet applications in toda...
11/22/2021

Quantum time inversion to prevent DDoS attacks: A potentially realizable TENET technology

An effect known as time inversion was introduced in Christopher Nolan's ...
12/28/2017

Satellite-Based Continuous-Variable Quantum Communications: State-of-the-Art and a Predictive Outlook

The recent launch of the Micius quantum-enabled satellite heralds a majo...
12/12/2017

Vulnerability of Complex Networks in Center-Based Attacks

We study the vulnerability of synthetic as well as real-world networks i...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

Acknowledgments

NFJ acknowledges partial support from the Air Force under AFOSR grant FA9550-16-1-0247, and the National Science Foundation (NSF) under grant CNS 1522693. FJG-R, FJR and LQ acknowledge financial support from Facultad de Ciencias through UniAndes-2019 projects

Excited state quantum phase transition in driven Dicke model

and Quantum thermalization and optimal control in many-body systems. The views and conclusions contained herein are solely those of the authors and do not represent official policies or endorsements by any of the entities named in this paper.

References

  • [1] See special set of “Quantum Horizons” articles in Physics World at https://physicsworld.com/p/collections/quantum-horizons/.
  • [2] A. Ekert, Phys. Rev. Lett. 67, 661 (1991).
  • [3] S. Lloyd, Nature 406, 1047 (2017).
  • [4] N. Nickerson, Y. Li, S. Benjamin, Nature Communications 4, 1756 (2013).
  • [5] A. Ekert, R. Renner, Nature 507, 443 (2014).
  • [6] S. Barz, et al., Science 335, 303 (2012).
  • [7] T. Albash, D. A. Lidar, Rev. Mod. Phys. 90, 015002 (2018).
  • [8] W. H. Zurek, Physics Today 67, 44 (2014).
  • [9] J. Dziarmaga, W. H. Zurek, M. Zwolak, Nature Physics 8, 49 (2011).
  • [10] X.-S. Ma, et al., Proceedings of the National Academy of Sciences 110, 1221 (2013).
  • [11] The National Science Foundation funding in Quantum Technologies at https://www.nsf.gov/events/event_summ.jsp?cntn_id=296901.
  • [12] European Commission in Quantum Technologies at https://qt.eu and https://ktn-uk.co.uk/interests/quantum-technologies.
  • [13] National Natural Science Foundation of China https://www.nsfc.gov.cn.
  • [14] S. Pirandola, S. L. Braunstein, Nature 532, 169 (2016).
  • [15] D. Castelvecchi, Nature 554, 289 (2018).
  • [16] S. Wehner, D. Elkouss, R. Hanson, Science 362 (2018).
  • [17] S.-K. Liao, et al., Phys. Rev. Lett. 120, 030501 (2018).
  • [18] J.-G. Ren, et al., Nature 549, 70 (2017).
  • [19] B. Schuurman, et al., Studies in Conflict & Terrorism 0, 1 (2018).
  • [20] P. Gill, et al., Criminology and Public Policy 16, 99 (2017).
  • [21] N. Johnson, et al., Science 352, 1459 (2016).
  • [22] N. Johnson, et al., Science 333, 81 (2011).
  • [23] N. Johnson, et al., Scientific Reports 3, 3463 (2013).
  • [24] J. Bohorquez, et al., Nature 462, 911 (2009).
  • [25] P. D. Manrique, et al., Phys. Rev. Lett. 121, 048301 (2018).
  • [26] N. F. Johnson, Science 355, 801 (2017).
  • [27] J. Robb, Brave New War (Wiley, New York, 2008).
  • [28] M. Spagat, et al., PLOS ONE 13, 1 (2018).
  • [29] O. L. Acevedo, L. Quiroga, F. J. Rodríguez, N. F. Johnson, Phys. Rev. Lett. 112, 030403 (2014).
  • [30] S. Ritter, et al., Nature 484, 195 (2012).
  • [31] I. M. Mirza, J. C. Schotland, Phys. Rev. A 94, 012309 (2016).
  • [32] S. Lloyd, Science 321, 1463 (2008).
  • [33] J. Hofmann, et al., Science 337, 72 (2012).
  • [34] B. Hensen, et al., Nature 526, 682 (2015).
  • [35] C. Simon, W. T. M. Irvine, Phys. Rev. Lett. 91, 110405 (2003).
  • [36] J. Yin, et al., Science 356, 1140 (2017).
  • [37] A. Mishra, T. Albash, D. A. Lidar, Nature Communications 9, 2917 (2018).
  • [38] G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984).
  • [39] F. Herrera, F. C. Spano, Phys. Rev. Lett. 116, 238301 (2016).
  • [40] C. Schneider, D. Porras, T. Schaetz, Rep. Prog. Phys. 75, 024401 (2012).
  • [41] R. H. Dicke, Phys. Rev. 93, 99 (1954).
  • [42] K. Hepp, E. H. Lieb, Annals of Physics 76, 360 (1973).
  • [43] K. Hepp, E. H. Lieb, Ann. Phys. 76, 360 (1973).
  • [44] X. Gu, S.-N. Huai, F. Nori, Y.-x. Liu, Phys. Rev. A 93, 063827 (2016).
  • [45] W. Guerin, M. O. Araújo, R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).
  • [46] J. Klinder, H. Kebler, M. Wolke, L. Mathey, A. Hemmerich, Proceedings of the National Academy of Sciences 112, 3290 (2015).
  • [47] S. A. Will, J. W. Park, Z. Z. Yan, H. Loh, M. W. Zwierlein, Phys. Rev. Lett. 116, 225306 (2016).
  • [48] K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010).
  • [49] C. F. Lee, N. F. Johnson, Europhysics Letters 81, 37004 (2008).
  • [50] T. C. Jarrett, C. F. Lee, N. F. Johnson, Phys. Rev. B, Rapid Communications 74, 121301 (2006).
  • [51] C. F. Lee, N. F. Johnson, Phys. Rev. Lett. 93, 083001 (2004).
  • [52] T. C. Jarrett, A. Olaya-Castro, N. F. Johnson, Europhysics Letters 77, 34001 (2007).
  • [53] O. L. Acevedo, L. Quiroga, F. J. Rodríguez, N. F. Johnson, Phys. Rev. A 92, 032330 (2015).
  • [54] H. P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007).
  • [55] N. MacKay, Journal of the Operational Research Society 66, 2 (2015).
  • [56] M. Fratini, et al., Nature 466, 841 (2010).
  • [57] N. Johnson, et al., AIP Advances p. 012114 (2011).