Quantum soundness of testing tensor codes

11/15/2021
by   Zhengfeng Ji, et al.
0

A locally testable code is an error-correcting code that admits very efficient probabilistic tests of membership. Tensor codes provide a simple family of combinatorial constructions of locally testable codes that generalize the family of Reed-Muller codes. The natural test for tensor codes, the axis-parallel line vs. point test, plays an essential role in constructions of probabilistically checkable proofs. We analyze the axis-parallel line vs. point test as a two-prover game and show that the test is sound against quantum provers sharing entanglement. Our result implies the quantum-soundness of the low individual degree test, which is an essential component of the MIP* = RE theorem. Our proof also generalizes to the infinite-dimensional commuting-operator model of quantum provers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro