Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions
We construct quantum public-key encryption from one-way functions. In our construction, public keys are quantum, but ciphertexts are classical. Quantum public-key encryption from one-way functions (or weaker primitives such as pseudorandom function-like states) are also proposed in some recent works [Morimae-Yamakawa, eprint:2022/1336; Coladangelo, eprint:2023/282; Grilo-Sattath-Vu, eprint:2023/345; Barooti-Malavolta-Walter, eprint:2023/306]. However, they have a huge drawback: they are secure only when quantum public keys can be transmitted to the sender (who runs the encryption algorithm) without being tampered with by the adversary, which seems to require unsatisfactory physical setup assumptions such as secure quantum channels. Our construction is free from such a drawback: it guarantees the secrecy of the encrypted messages even if we assume only unauthenticated quantum channels. Thus, the encryption is done with adversarially tampered quantum public keys. Our construction based only on one-way functions is the first quantum public-key encryption that achieves the goal of classical public-key encryption, namely, to establish secure communication over insecure channels.
READ FULL TEXT