Quantum Memristors in Quantum Photonics

09/22/2017
by   M. Sanz, et al.
UPV/EHU
0

We propose a method to build quantum memristors in quantum photonic platforms. We firstly design an effective beam splitter, which is tunable in real-time, by means of a Mach-Zehnder-type array with two equal 50:50 beam splitters and a tunable retarder, which allows us to control its reflectivity. Then, we show that this tunable beam splitter, when equipped with weak measurements and classical feedback, behaves as a quantum memristor. Indeed, in order to prove its quantumness, we show how to codify quantum information in the coherent beams. Moreover, we estimate the memory capability of the quantum memristor. Finally, we show the feasibility of the proposed setup in integrated quantum photonics.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

03/02/2021

Coherent control and distinguishability of quantum channels via PBS-diagrams

We introduce a graphical language for coherent control of general quantu...
11/02/2017

Quantum programming made easy

We introduce the functional language IQu ("Haiku") which, under the para...
09/09/2019

A Quantum Search Decoder for Natural Language Processing

Probabilistic language models, e.g. those based on an LSTM, often face t...
08/01/2019

Quantum optimal transport is cheaper

We compare bipartite (Euclidean) matching problems in classical and quan...
09/22/2020

Control dynamics using quantum memory

We propose a new quantum numerical scheme to control the dynamics of a q...
03/02/2018

Quantum distance-based classifier with constant size memory, distributed knowledge and state recycling

In this work we examine recently proposed distance-based classification ...
11/27/2019

Vectorizing Quantum Turbulence Vortex-Core Lines for Real-Time Visualization

Vectorizing vortex-core lines is crucial for high-quality visualization ...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • (1) L. O. Chua, Memristor – The Missing Circuit Element. IEEE Transactions on Circuit Theory 18, 507 (1971).
  • (2) M. Di Ventra, Y. V. Pershin, and L. O. Chua, Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE 97, 1717 (2009).
  • (3) M. Di Ventra and Y. V. Pershin, On the physical properties of memristive, memcapacitive and meminductive systems. Nanotechnology 24, 255201 (2013).
  • (4) F. L. Traversa and M. Di Ventra, Universal memcomputing machines. IEEE Trans. Neural Netw. Learn. Syst. 26, 2702 (2015).
  • (5) G. Snider, et al

    ., From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain. IEEE Computer

    44, 21 (2011).
  • (6) E. Lehtonen, Two memristors suffice to compute all Boolean functions. Electronics Letters 46, 239 (2010).
  • (7) J. J. Yang, D. B. Strukov, and D. R. Stewart, Memristive devices for computing. Nature Nanotech. 8, 13 (2013).
  • (8) L. O. Chua and S. M. Kang, Memrisive devices and systems. Proceedings of the IEEE 64, 209 (1976).
  • (9) L. O. Chua, Memristor, Hodgkin-Huxley, and Edge of Chaos. Nanotechnology 24, 383001 (2013).
  • (10) D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, Memristors for Energy-Efficient New Computing Paradigms. Advanced Electronic Materials 2, 1600090 (2016).
  • (11)

    S. D. Whitehead and L.-J. Lin, Reinforcement learning of non-Markov decision processes. Artificial Intelligence

    73, 271 (1995).
  • (12)

    W. Gerstner, R. Kempter, J. Leo van Hemmen, and H. Wagner, A neuronal learning rule for sub-millisecond temporal coding. Nature

    383, 76 (1996).
  • (13) T. Serrano-Gotarredona, T. Masquelier, T. Prodromakis, G. Indiveri, and B. Linares-Barranco, STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience 7, 2 (2013).
  • (14) R. Berdan, E. Vasilaki, A. Khiat, G. Indiveri, A. Serb, and T. Prodromakis, Emulating short-term synaptic dynamics with memristive devices. Sci. Rep. 5, 18639 (2015).
  • (15) P. Pfeiffer, I. L. Egusquiza, M. Di Ventra, M. Sanz, and E. Solano, Quantum memristors. Scientific Reports 6, 29507 (2016).
  • (16) J. Salmilehto, F. Deppe, M. Di Ventra, M. Sanz, and E. Solano, Quantum Memristors with Superconducting Circuits, Scientific Reports 7, 42044 (2017).
  • (17) S. N. Shevchenko, Y. V. Pershin, and F. Nori, Qubit-based memcapacitors and meminductors. Phys. Rev. Applied 6, 014006 (2016).
  • (18) B. D. Josephson, The discovery of tunnelling supercurrents. Rev. Mod. Phys. 46, 251 (1974).
  • (19) Y. V. Pershinand M. Di Ventra, Memory effects in complex materials and nanoscale systems. Advances in Physics 60,145 (2011).
  • (20) Y. N. Joglekar and S. J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661 (2009).
  • (21) M. S. Kim, W. Son, V. Bužek, and P. L. Knight, Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement, Phys. Rev. A 65, 032323 (2002).
  • (22) R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  • (23) M. Sanz, D. Pérez-García, M. M. Wolf and J. I. Cirac, A Quantum Version of Wielandt’s Inequality, IEEE Trans. Inf. Th. 56, 4668 (2010).
  • (24) P. Iyengar, G. N. Chandan, and R. Srikanth, Quantifying quantumness via commutators: an application to quantum walk. ArXiv:1312.1329 (2013).
  • (25) S. Meznaric, S. R. Clark, and A. Datta, Quantifying the nonclassicality of operations, Phys. Rev. Lett. 110, 070502 (2013).
  • (26) U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano, Biomimetic cloning of quantum observables, Scientific Reports 4, 4910 (2014).
  • (27) L. Ferro, et al., Measuring quantumness: from theory to observability in interferometric setups. ArXiv:1501.03099 (2015).
  • (28) J. Jing, L.-A. Wu, and A. del Campo, Fundamental Speed Limits to the Generation of Quantumness, Scientific Reports 6, 38149 (2016).
  • (29) S. M. Barnett and P. M. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 2002).
  • (30) S. L. Braunstein and P. van Loock, Quantum information with continuous variables. Rev. Mod. Phys. 77, 513 (2005).
  • (31) O. V. Zhirov and D. L. Shepelyansky, Synchronization and Bistability of a Qubit Coupled to a Driven Dissipative Oscillator, Phys. Rev. Lett. 100, 014101 (2008).
  • (32) C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics (Springer Berlin, 2004).
  • (33) P. J. Shadbolt et al., Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit. Nature Photonics 6, 45-49 (2012).
  • (34) L. Lamata, Basic protocols in quantum reinforcement learning with superconducting circuits, Scientific Reports 7, 1609 (2017).
  • (35) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549, 195 (2017).
  • (36) A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas, Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers, arXiv:1708.09757.
  • (37) L. Lamata, U. Alvarez-Rodriguez, J Martin-Guerrero, M. Sanz, and E. Solano, Quantum Autoencoders via Quantum Adders with Genetic Algorithms. ArXiv: 1709.07409
  • (38) U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano, Biomimetic Cloning of Quantum Observables, Scientific Reports 4, 4910 (2014).
  • (39) U. Alvarez-Rodriguez, M. Sanz, L. Lamata, and E. Solano, E. Artificial Life in Quantum Technologies, Scientific Reports 6, 20956 (2016).