Quantum linear systems algorithms: a primer

02/22/2018
by   Danial Dervovic, et al.
0

The Harrow-Hassidim-Lloyd (HHL) quantum algorithm for sampling from the solution of a linear system provides an exponential speed-up over its classical counterpart. The problem of solving a system of linear equations has a wide scope of applications, and thus HHL constitutes an important algorithmic primitive. In these notes, we present the HHL algorithm and its improved versions in detail, including explanations of the constituent sub- routines. More specifically, we discuss various quantum subroutines such as quantum phase estimation and amplitude amplification, as well as the important question of loading data into a quantum computer, via quantum RAM. The improvements to the original algorithm exploit variable-time amplitude amplification as well as a method for implementing linear combinations of unitary operations (LCUs) based on a decomposition of the operators using Fourier and Chebyshev series. Finally, we discuss a linear solver based on the quantum singular value estimation (QSVE) subroutine.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset