DeepAI AI Chat
Log In Sign Up

Quantum distinguishing complexity, zero-error algorithms, and statistical zero knowledge

by   Shalev Ben-David, et al.
University of Waterloo

We define a new query measure we call quantum distinguishing complexity, denoted QD(f) for a Boolean function f. Unlike a quantum query algorithm, which must output a state close to |0> on a 0-input and a state close to |1> on a 1-input, a "quantum distinguishing algorithm" can output any state, as long as the output states for any 0-input and 1-input are distinguishable. Using this measure, we establish a new relationship in query complexity: For all total functions f, Q_0(f)=O (Q(f)^5), where Q_0(f) and Q(f) denote the zero-error and bounded-error quantum query complexity of f respectively, improving on the previously known sixth power relationship. We also define a query measure based on quantum statistical zero-knowledge proofs, QSZK(f), which is at most Q(f). We show that QD(f) in fact lower bounds QSZK(f) and not just Q(f). QD(f) also upper bounds the (positive-weights) adversary bound, which yields the following relationships for all f: Q(f) >= QSZK(f) >= QS(f) = Omega(Adv(f)). This sheds some light on why the adversary bound proves suboptimal bounds for problems like Collision and Set Equality, which have low QSZK complexity. Lastly, we show implications for lifting theorems in communication complexity. We show that a general lifting theorem for either zero-error quantum query complexity or for QSZK would imply a general lifting theorem for bounded-error quantum query complexity.


page 1

page 2

page 3

page 4


On Query-to-Communication Lifting for Adversary Bounds

We investigate query-to-communication lifting theorems for models relate...

Lower bounds on quantum query complexity for symmetric functions

One of the main reasons for query model's prominence in quantum complexi...

Oracle Separations for Quantum Statistical Zero-Knowledge

This paper investigates the power of quantum statistical zero knowledge ...

Quantum Algorithm for the Multicollision Problem

The current paper presents a new quantum algorithm for finding multicoll...

One Weird Trick Tightens the Quantum Adversary Bound, Especially for Success Probability Close to 1/2

The textbook adversary bound for function evaluation states that to eval...

The quantum query complexity of composition with a relation

The negative weight adversary method, ADV^±(g), is known to characterize...

Symmetry and Quantum Query-to-Communication Simulation

Buhrman, Cleve and Wigderson (STOC'98) showed that for every Boolean fun...