Quantum Computing: Lecture Notes

07/19/2019
by   Ronald de Wolf, et al.
0

This is a set of lecture notes suitable for a Master's course on quantum computation and information from the perspective of theoretical computer science. The first version was written in 2011, with many extensions and improvements in subsequent years. The first 10 chapters cover the circuit model and the main quantum algorithms (Deutsch-Jozsa, Simon, Shor, Hidden Subgroup Problem, Grover, quantum walks, Hamiltonian simulation and HHL). They are followed by 2 chapters about complexity, 4 chapters about distributed ("Alice and Bob") settings, and a final chapter about quantum error correction. Appendices A and B give a brief introduction to the required linear algebra and some other mathematical and computer science background. All chapters come with exercises, with some hints provided in Appendix C.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset