Quantum Carry Lookahead Adders for NISQ and Quantum Image Processing

06/09/2021
by   Himanshu Thapliyal, et al.
0

Progress in quantum hardware design is progressing toward machines of sufficient size to begin realizing quantum algorithms in disciplines such as encryption and physics. Quantum circuits for addition are crucial to realize many quantum algorithms on these machines. Ideally, quantum circuits based on fault-tolerant gates and error-correcting codes should be used as they tolerant environmental noise. However, current machines called Noisy Intermediate Scale Quantum (NISQ) machines cannot support the overhead associated with faulttolerant design. In response, low depth circuits such as quantum carry lookahead adders (QCLA)s have caught the attention of researchers. The risk for noise errors and decoherence increase as the number of gate layers (or depth) in the circuit increases. This work presents an out-of-place QCLA based on Clifford+T gates. The QCLAs optimized for T gate count and make use of a novel uncomputation gate to save T gates. We base our QCLAs on Clifford+T gates because they can eventually be made faulttolerant with error-correcting codes once quantum hardware that can support fault-tolerant designs becomes available. We focus on T gate cost as the T gate is significantly more costly to make faulttolerant than the other Clifford+T gates. The proposed QCLAs are compared and shown to be superior to existing works in terms of T-count and therefore the total number of quantum gates. Finally, we illustrate the application of the proposed QCLAs in quantum image processing by presenting quantum circuits for bilinear interpolation.

READ FULL TEXT
research
09/24/2018

T-count Optimized Quantum Circuits for Bilinear Interpolation

Quantum circuits for basic image processing functions such as bilinear i...
research
02/01/2023

Hardness of braided quantum circuit optimization in the surface code

Large-scale quantum information processing requires the use of quantum e...
research
11/22/2018

On the Influence of Initial Qubit Placement During NISQ Circuit Compilation

Noisy Intermediate-Scale Quantum (NISQ) machines are not fault-tolerant,...
research
12/08/2021

Experimental Characterization of Fault-Tolerant Circuits in Small-Scale Quantum Processors

Experiments conducted on open-access cloud-based IBM Quantum devices are...
research
12/29/2019

Quantum Image Preparation Based on Exclusive Sum-of-Product Minimization and Ternary Trees

Quantum image processing is one of the promising fields of quantum infor...
research
12/21/2017

T-count and Qubit Optimized Quantum Circuit Design of the Non-Restoring Square Root Algorithm

Quantum circuits for basic mathematical functions such as the square roo...
research
03/22/2021

Variational quantum compiling with double Q-learning

Quantum compiling aims to construct a quantum circuit V by quantum gates...

Please sign up or login with your details

Forgot password? Click here to reset