Quantum and approximation algorithms for maximum witnesses of Boolean matrix products
The problem of finding maximum (or minimum) witnesses of the Boolean product of two Boolean matrices (MW for short) has a number of important applications, in particular the all-pairs lowest common ancestor (LCA) problem in directed acyclic graphs (dags). The best known upper time-bound on the MW problem for n× n Boolean matrices of the form O(n^2.575) has not been substantially improved since 2006. In order to obtain faster algorithms for this problem, we study quantum algorithms for MW and approximation algorithms for MW (in the standard computational model). Some of our quantum algorithms are input or output sensitive. Our fastest quantum algorithm for the MW problem, and consequently for the related problems, runs in time Õ(n^2+λ/2)=Õ(n^2.434), where λ satisfies the equation ω(1, λ, 1) = 1 + 1.5 λ and ω(1, λ, 1) is the exponent of the multiplication of an n × n^λmatrix by an n^λ× n matrix. Next, we consider a relaxed version of the MW problem (in the standard model) asking for reporting a witness of bounded rank (the maximum witness has rank 1) for each non-zero entry of the matrix product. By reducing the relaxed problem to the so called k-witness problem, we provide an algorithm that reports for each non-zero entry C[i,j] of the product matrix C a witness of rank O( W_C(i,j)/k ), where W_C(i,j) is the number of witnesses for C[i,j], with high probability. The algorithm runs in Õ(n^ωk^0.4653 +n^2k) time, where ω=ω(1,1,1).
READ FULL TEXT