Quantized tensor FEM for multiscale problems: diffusion problems in two and three dimensions

06/02/2020
by   V. Kazeev, et al.
0

Homogenization in terms of multiscale limits transforms a multiscale problem with n+1 asymptotically separated microscales posed on a physical domain D ⊂ℝ^d into a one-scale problem posed on a product domain of dimension (n+1)d by introducing n so-called "fast variables". This procedure allows to convert n+1 scales in d physical dimensions into a single-scale structure in (n+1)d dimensions. We prove here that both the original, physical multiscale problem and the corresponding high-dimensional, one-scale limiting problem can be efficiently treated numerically with the recently developed quantized tensor-train finite-element method (QTT-FEM). The method is based on restricting computation to sequences of nested subspaces of low dimensions (which are called tensor ranks) within a vast but generic "virtual" (background) discretization space. In the course of computation, these subspaces are computed iteratively and data-adaptively at runtime, bypassing any "offline precomputation". For the purpose of theoretical analysis, such low-dimensional subspaces are constructed analytically to bound the tensor ranks vs. error τ>0. We consider a model linear elliptic multiscale problem in several physical dimensions and show, theoretically and experimentally, that both (i) the solution of the associated high-dimensional one-scale problem and (ii) the corresponding approximation to the solution of the multiscale problem admit efficient approximation by the QTT-FEM. These problems can therefore be numerically solved in a scale-robust fashion by standard (low-order) PDE discretizations combined with state-of-the-art general-purpose solvers for tensor-structured linear systems. We prove scale-robust exponential convergence, i.e., that QTT-FEM achieves accuracy τ with the number of effective degrees of freedom scaling polynomially in logτ.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro