Quantifying Program Bias

02/17/2017 ∙ by Aws Albarghouthi, et al. ∙ 0

With the range and sensitivity of algorithmic decisions expanding at a break-neck speed, it is imperative that we aggressively investigate whether programs are biased. We propose a novel probabilistic program analysis technique and apply it to quantifying bias in decision-making programs. Specifically, we (i) present a sound and complete automated verification technique for proving quantitative properties of probabilistic programs; (ii) show that certain notions of bias, recently proposed in the fairness literature, can be phrased as quantitative correctness properties; and (iii) present FairSquare, the first verification tool for quantifying program bias, and evaluate it on a range of decision-making programs.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.