Quantified advantage of discontinuous weight selection in approximations with deep neural networks

05/03/2017
by   Dmitry Yarotsky, et al.
0

We consider approximations of 1D Lipschitz functions by deep ReLU networks of a fixed width. We prove that without the assumption of continuous weight selection the uniform approximation error is lower than with this assumption at least by a factor logarithmic in the size of the network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro