Quality Assurance in MLOps Setting: An Industrial Perspective

11/23/2022
by   Ayan Chatterjee, et al.
0

Today, machine learning (ML) is widely used in industry to provide the core functionality of production systems. However, it is practically always used in production systems as part of a larger end-to-end software system that is made up of several other components in addition to the ML model. Due to production demand and time constraints, automated software engineering practices are highly applicable. The increased use of automated ML software engineering practices in industries such as manufacturing and utilities requires an automated Quality Assurance (QA) approach as an integral part of ML software. Here, QA helps reduce risk by offering an objective perspective on the software task. Although conventional software engineering has automated tools for QA data analysis for data-driven ML, the use of QA practices for ML in operation (MLOps) is lacking. This paper examines the QA challenges that arise in industrial MLOps and conceptualizes modular strategies to deal with data integrity and Data Quality (DQ). The paper is accompanied by real industrial use-cases from industrial partners. The paper also presents several challenges that may serve as a basis for future studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset