QMUL-SDS at CheckThat! 2020: Determining COVID-19 Tweet Check-Worthiness Using an Enhanced CT-BERT with Numeric Expressions

08/30/2020 ∙ by Rabab Alkhalifa, et al. ∙ 0

This paper describes the participation of the QMUL-SDS team for Task 1 of the CLEF 2020 CheckThat! shared task. The purpose of this task is to determine the check-worthiness of tweets about COVID-19 to identify and prioritise tweets that need fact-checking. The overarching aim is to further support ongoing efforts to protect the public from fake news and help people find reliable information. We describe and analyse the results of our submissions. We show that a CNN using COVID-Twitter-BERT (CT-BERT) enhanced with numeric expressions can effectively boost performance from baseline results. We also show results of training data augmentation with rumours on other topics. Our best system ranked fourth in the task with encouraging outcomes showing potential for improved results in the future.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.