Pyramid Scale Network for Crowd Counting

07/11/2020
by   Junhao Cheng, et al.
10

Crowd counting is a challenging task in computer vision due to serious occlusions, complex background and large scale variations, etc. Multi-column architecture is widely adopted to overcome these challenges, yielding state-of-the-art performance in many public benchmarks. However, there still are two issues in such design: scale limitation and feature similarity. Further performance improvements are thus restricted. In this paper, we propose a novel crowd counting framework called Pyramid Scale Network (PSNet) to explicitly address these issues. Specifically, for scale limitation, we adopt three Pyramid Scale Module (PSM) to efficiently capture multi-scale features, which integrate a message passing mechanism and an attention mechanism into multi-column architecture. Moreover, for feature similarity, a Differential loss is introduced to make the features learned by each column in PSM appropriately different from each other. To the best of our knowledge, PSNet is the first work to explicitly address scale limitation and feature similarity in multi-column design. Extensive experiments on five benchmark datasets demonstrate the effectiveness of the proposed innovations as well as the superior performance over the state-of-the-art. Our code is publicly available at: https://github.com/JunhaoCheng/Pyramid_Scale_Network

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset