Put your money where your mouth is: Using deep learning to identify consumer tribes from word usage

05/27/2021 ∙ by P. Gloor, et al. ∙ 0

Internet and social media offer firms novel ways of managing their marketing strategy and gain competitive advantage. The groups of users expressing themselves on the Internet about a particular topic, product, or brand are frequently called a virtual tribe or E-tribe. However, there are no automatic tools for identifying and studying the characteristics of these virtual tribes. Towards this aim, this paper presents Tribefinder, a system to reveal Twitter users' tribal affiliations, by analyzing their tweets and language use. To show the potential of this instrument, we provide an example considering three specific tribal macro-categories: alternative realities, lifestyle, and recreation. In addition, we discuss the different characteristics of each identified tribe, in terms of use of language and social interaction metrics. Tribefinder illustrates the importance of adopting a new lens for studying virtual tribes, which is crucial for firms to properly design their marketing strategy, and for scholars to extend prior marketing research.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.