Pseudo-Marginal Hamiltonian Monte Carlo

07/08/2016
by   Fredrik Lindsten, et al.
0

Bayesian inference in the presence of an intractable likelihood function is computationally challenging. When following a Markov chain Monte Carlo (MCMC) approach to approximate the posterior distribution in this context, one typically either uses MCMC schemes which target the joint posterior of the parameters and some auxiliary latent variables or pseudo-marginal Metropolis-Hastings (MH) schemes which mimic a MH algorithm targeting the marginal posterior of the parameters by approximating unbiasedly the intractable likelihood. In scenarios where the parameters and auxiliary variables are strongly correlated under the posterior and/or this posterior is multimodal, Gibbs sampling or Hamiltonian Monte Carlo (HMC) will perform poorly and the pseudo-marginal MH algorithm, as any other MH scheme, will be inefficient for high dimensional parameters. We propose here an original MCMC algorithm, termed pseudo-marginal HMC, which approximates the HMC algorithm targeting the marginal posterior of the parameters. We demonstrate through experiments that pseudo-marginal HMC can outperform significantly both standard HMC and pseudo-marginal MH schemes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset