Pruning Adversarially Robust Neural Networks without Adversarial Examples

10/09/2022
by   Tong Jian, et al.
17

Adversarial pruning compresses models while preserving robustness. Current methods require access to adversarial examples during pruning. This significantly hampers training efficiency. Moreover, as new adversarial attacks and training methods develop at a rapid rate, adversarial pruning methods need to be modified accordingly to keep up. In this work, we propose a novel framework to prune a previously trained robust neural network while maintaining adversarial robustness, without further generating adversarial examples. We leverage concurrent self-distillation and pruning to preserve knowledge in the original model as well as regularizing the pruned model via the Hilbert-Schmidt Information Bottleneck. We comprehensively evaluate our proposed framework and show its superior performance in terms of both adversarial robustness and efficiency when pruning architectures trained on the MNIST, CIFAR-10, and CIFAR-100 datasets against five state-of-the-art attacks. Code is available at https://github.com/neu-spiral/PwoA/.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset