Prune Responsibly

09/10/2020
by   Michela Paganini, et al.
0

Irrespective of the specific definition of fairness in a machine learning application, pruning the underlying model affects it. We investigate and document the emergence and exacerbation of undesirable per-class performance imbalances, across tasks and architectures, for almost one million categories considered across over 100K image classification models that undergo a pruning process.We demonstrate the need for transparent reporting, inclusive of bias, fairness, and inclusion metrics, in real-life engineering decision-making around neural network pruning. In response to the calls for quantitative evaluation of AI models to be population-aware, we present neural network pruning as a tangible application domain where the ways in which accuracy-efficiency trade-offs disproportionately affect underrepresented or outlier groups have historically been overlooked. We provide a simple, Pareto-based framework to insert fairness considerations into value-based operating point selection processes, and to re-evaluate pruning technique choices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset