Provably scale-covariant hierarchical continuous networks based on scale-normalized differential expressions coupled in cascade

05/29/2019
by   Tony Lindeberg, et al.
0

This article presents a theory for constructing continuous hierarchical networks in such a way that the networks are guaranteed to be provably scale covariant. We first present a general sufficiency argument for obtaining scale covariance, which holds for a wide class of networks defined from linear and non-linear differential expressions expressed in terms of scale-normalized scale-space derivatives. Then, we present a more detailed development of one example of such a network constructed from a combination of mathematically derived models of receptive fields and biologically inspired computations. Based on a functional model of complex cells in terms of an oriented quasi quadrature combination of first- and second-order directional Gaussian derivatives, we couple such primitive computations in cascade over combinatorial expansions over image orientations. Scale-space properties of the computational primitives are analysed and we give explicit proofs of how the resulting representation allows for scale and rotation covariance. A prototype application to texture analysis is developed and it is demonstrated that a simplified mean-reduced representation of the resulting QuasiQuadNet leads to promising experimental results on three texture datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset