ProtoGate: Prototype-based Neural Networks with Local Feature Selection for Tabular Biomedical Data

06/21/2023
by   Xiangjian Jiang, et al.
0

Tabular biomedical data poses challenges in machine learning because it is often high-dimensional and typically low-sample-size. Previous research has attempted to address these challenges via feature selection approaches, which can lead to unstable performance on real-world data. This suggests that current methods lack appropriate inductive biases that capture patterns common to different samples. In this paper, we propose ProtoGate, a prototype-based neural model that introduces an inductive bias by attending to both homogeneity and heterogeneity across samples. ProtoGate selects features in a global-to-local manner and leverages them to produce explainable predictions via an interpretable prototype-based model. We conduct comprehensive experiments to evaluate the performance of ProtoGate on synthetic and real-world datasets. Our results show that exploiting the homogeneous and heterogeneous patterns in the data can improve prediction accuracy while prototypes imbue interpretability.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset