ProposalCLIP: Unsupervised Open-Category Object Proposal Generation via Exploiting CLIP Cues
Object proposal generation is an important and fundamental task in computer vision. In this paper, we propose ProposalCLIP, a method towards unsupervised open-category object proposal generation. Unlike previous works which require a large number of bounding box annotations and/or can only generate proposals for limited object categories, our ProposalCLIP is able to predict proposals for a large variety of object categories without annotations, by exploiting CLIP (contrastive language-image pre-training) cues. Firstly, we analyze CLIP for unsupervised open-category proposal generation and design an objectness score based on our empirical analysis on proposal selection. Secondly, a graph-based merging module is proposed to solve the limitations of CLIP cues and merge fragmented proposals. Finally, we present a proposal regression module that extracts pseudo labels based on CLIP cues and trains a lightweight network to further refine proposals. Extensive experiments on PASCAL VOC, COCO and Visual Genome datasets show that our ProposalCLIP can better generate proposals than previous state-of-the-art methods. Our ProposalCLIP also shows benefits for downstream tasks, such as unsupervised object detection.
READ FULL TEXT