Proper Selection of Obreshkov-Like Numerical Integrators Used as Numerical Differentiators

12/02/2020
by   Sheng Lei, et al.
0

Criteria for Obreshkov-like numerical integrators to be used as numerical differentiators are proposed in this paper. The coefficients of a numerical integrator for the highest order derivative turn out to determine its suitability and potential hazards such as numerical oscillation and bias. The suitability of some existing Obreshkov-like numerical integrators is examined. It is revealed that the notorious numerical oscillations induced by the implicit trapezoidal method cannot always be eliminated by using the backward Euler method for a few time steps. Guided by the proposed criteria, a frequency response optimized integrator considering second order derivative is put forward which is suitable to be used as a numerical differentiator. Theoretical observations are verified in time domain via case studies.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro