Prompt Guided Transformer for Multi-Task Dense Prediction

07/28/2023
by   Yuxiang Lu, et al.
0

Task-conditional architecture offers advantage in parameter efficiency but falls short in performance compared to state-of-the-art multi-decoder methods. How to trade off performance and model parameters is an important and difficult problem. In this paper, we introduce a simple and lightweight task-conditional model called Prompt Guided Transformer (PGT) to optimize this challenge. Our approach designs a Prompt-conditioned Transformer block, which incorporates task-specific prompts in the self-attention mechanism to achieve global dependency modeling and parameter-efficient feature adaptation across multiple tasks. This block is integrated into both the shared encoder and decoder, enhancing the capture of intra- and inter-task features. Moreover, we design a lightweight decoder to further reduce parameter usage, which accounts for only 2.7 dense prediction benchmarks, PASCAL-Context and NYUD-v2, demonstrate that our approach achieves state-of-the-art results among task-conditional methods while using fewer parameters, and maintains a significant balance between performance and parameter size.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset