Progressive Self-Distillation for Ground-to-Aerial Perception Knowledge Transfer

08/29/2022
by   Junjie Hu, et al.
1

We study a practical yet hasn't been explored problem: how a drone can perceive in an environment from viewpoints of different flight heights. Unlike autonomous driving where the perception is always conducted from a ground viewpoint, a flying drone may flexibly change its flight height due to specific tasks, requiring capability for viewpoint invariant perception. To reduce the effort of annotation of flight data, we consider a ground-to-aerial knowledge distillation method while using only labeled data of ground viewpoint and unlabeled data of flying viewpoints. To this end, we propose a progressive semi-supervised learning framework which has four core components: a dense viewpoint sampling strategy that splits the range of vertical flight height into a set of small pieces with evenly-distributed intervals, and at each height we sample data from that viewpoint; the nearest neighbor pseudo-labeling that infers labels of the nearest neighbor viewpoint with a model learned on the preceding viewpoint; MixView that generates augmented images among different viewpoints to alleviate viewpoint difference; and a progressive distillation strategy to gradually learn until reaching the maximum flying height. We collect a synthesized dataset and a real-world dataset, and we perform extensive experiments to show that our method yields promising results for different flight heights.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset