Programs and algorithms for the shell decomposition of oscillating functions in space
Real-space refinement of atomic models in macromolecular crystallography or in cryo electron microscopy fits a model to a map obtained experimentally. This requires generating model maps of a limited resolution which moreover may vary from one molecular region to another. Calculating such map as a sum of atomic contributions requires that these contributions reflect the local resolution of the experimental map. A possibility to refine the parameters of these contribution means to express it as a function of atomic coordinates, displacement factor and eventually of resolution. Recently, Urzhumtsev Lunin (BioRxiv, 10.1101/2022.03.28.486044) suggested to decompose finite-resolution atomic images, and more generally spherically symmetric oscillating functions in space, into a sum of specially designed terms analytically dependent on all atomic parameters. Each term is a spherically symmetric function concentrated in a spherical shell. Here we describe the software and respective algorithms to carry out such shell decomposition of oscillating functions.
READ FULL TEXT