Probability Paths and the Structure of Predictions over Time

06/11/2021
by   Zhiyuan Lin, et al.
0

In settings ranging from weather forecasts to political prognostications to financial projections, probability estimates of future binary outcomes often evolve over time. For example, the estimated likelihood of rain on a specific day changes by the hour as new information becomes available. Given a collection of such probability paths, we introduce a Bayesian framework – which we call the Gaussian latent information martingale, or GLIM – for modeling the structure of dynamic predictions over time. Suppose, for example, that the likelihood of rain in a week is 50 scenarios. In the first, one expects the forecast is equally likely to become either 25 constant for the next several days. A time-sensitive decision-maker might select a course of action immediately in the latter scenario, but may postpone their decision in the former, knowing that new information is imminent. We model these trajectories by assuming predictions update according to a latent process of information flow, which is inferred from historical data. In contrast to general methods for time series analysis, this approach preserves the martingale structure of probability paths and better quantifies future uncertainties around probability paths. We show that GLIM outperforms three popular baseline methods, producing better estimated posterior probability path distributions measured by three different metrics. By elucidating the dynamic structure of predictions over time, we hope to help individuals make more informed choices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset