Probabilistic simulation of partial differential equations

10/13/2020 ∙ by Philipp Frank, et al. ∙ 0

Computer simulations of differential equations require a time discretization, which inhibits to identify the exact solution with certainty. Probabilistic simulations take this into account via uncertainty quantification. The construction of a probabilistic simulation scheme can be regarded as Bayesian filtering by means of probabilistic numerics. Gaussian prior based filters, specifically Gauss-Markov priors, have successfully been applied to simulation of ordinary differential equations (ODEs) and give rise to filtering problems that can be solved efficiently. This work extends this approach to partial differential equations (PDEs) subject to periodic boundary conditions and utilizes continuous Gaussian processes in space and time to arrive at a Bayesian filtering problem structurally similar to the ODE setting. The usage of a process that is Markov in time and statistically homogeneous in space leads to a probabilistic spectral simulation method that allows for an efficient realization. Furthermore, the Bayesian perspective allows the incorporation of methods developed within the context of information field theory such as the estimation of the power spectrum associated with the prior distribution, to be jointly estimated along with the solution of the PDE.



There are no comments yet.


page 9

page 11

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.