Probabilistic Qualitative Localization and Mapping

02/17/2023
by   Roee Mor, et al.
0

Simultaneous localization and mapping (SLAM) are essential in numerous robotics applications, such as autonomous navigation. Traditional SLAM approaches infer the metric state of the robot along with a metric map of the environment. While existing algorithms exhibit good results, they are still sensitive to measurement noise, sensor quality, and data association and are still computationally expensive. Alternatively, some navigation and mapping missions can be achieved using only qualitative geometric information, an approach known as qualitative spatial reasoning (QSR). We contribute a novel probabilistic qualitative localization and mapping approach in this work. We infer both the qualitative map and the qualitative state of the camera poses (localization). For the first time, we also incorporate qualitative probabilistic constraints between camera poses (motion model), improving computation time and performance. Furthermore, we take advantage of qualitative inference properties to achieve very fast approximated algorithms with good performance. In addition, we show how to propagate probabilistic information between nodes in the qualitative map, which improves estimation performance and enables inference of unseen map nodes - an important building block for qualitative active planning. We also conduct a study that shows how well we can estimate unseen nodes. Our method particularly appeals to scenarios with few salient landmarks and low-quality sensors. We evaluate our approach in simulation and on a real-world dataset and show its superior performance and low complexity compared to the state-of-the-art. Our analysis also indicates good prospects for using qualitative navigation and planning in real-world scenarios.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset