Probabilistic programming for birth-death models of evolution using an alive particle filter with delayed sampling

07/10/2019
by   Jan Kudlicka, et al.
0

We consider probabilistic programming for birth-death models of evolution and introduce a new widely-applicable inference method that combines an extension of the alive particle filter (APF) with automatic Rao-Blackwellization via delayed sampling. Birth-death models of evolution are an important family of phylogenetic models of the diversification processes that lead to evolutionary trees. Probabilistic programming languages (PPLs) give phylogeneticists a new and exciting tool: their models can be implemented as probabilistic programs with just a basic knowledge of programming. The general inference methods in PPLs reduce the need for external experts, allow quick prototyping and testing, and accelerate the development and deployment of new models. We show how these birth-death models can be implemented as simple programs in existing PPLs, and demonstrate the usefulness of the proposed inference method for such models. For the popular BiSSE model the method yields an increase of the effective sample size and the conditional acceptance rate by a factor of 30 in comparison with a standard bootstrap particle filter. Although concentrating on phylogenetics, the extended APF is a general inference method that shows its strength in situations where particles are often assigned zero weight. In the case when the weights are always positive, the extra cost of using the APF rather than the bootstrap particle filter is negligible, making our method a suitable drop-in replacement for the bootstrap particle filter in probabilistic programming inference.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset