Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine

10/02/2021
by   Charles F. Manski, et al.
0

This paper extends my research applying statistical decision theory to treatment choice with sample data, using maximum regret to evaluate the performance of treatment rules. The specific new contribution is to study as-if optimization using estimates of illness probabilities in clinical choice between surveillance and aggressive treatment. Beyond its specifics, the paper sends a broad message. Statisticians and computer scientists have addressed conditional prediction for decision making in indirect ways, the former applying classical statistical theory and the latter measuring prediction accuracy in test samples. Neither approach is satisfactory. Statistical decision theory provides a coherent, generally applicable methodology.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset