Probabilistic Planning with Preferences over Temporal Goals

03/26/2021
by   Jie Fu, et al.
0

We present a formal language for specifying qualitative preferences over temporal goals and a preference-based planning method in stochastic systems. Using automata-theoretic modeling, the proposed specification allows us to express preferences over different sets of outcomes, where each outcome describes a set of temporal sequences of subgoals. We define the value of preference satisfaction given a stochastic process over possible outcomes and develop an algorithm for time-constrained probabilistic planning in labeled Markov decision processes where an agent aims to maximally satisfy its preference formula within a pre-defined finite time duration. We present experimental results using a stochastic gridworld example and discuss possible extensions of the proposed preference model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro