Probabilistic Group Testing under Sum Observations: A Parallelizable 2-Approximation for Entropy Loss

by   Weidong Han, et al.

We consider the problem of group testing with sum observations and noiseless answers, in which we aim to locate multiple objects by querying the number of objects in each of a sequence of chosen sets. We study a probabilistic setting with entropy loss, in which we assume a joint Bayesian prior density on the locations of the objects and seek to choose the sets queried to minimize the expected entropy of the Bayesian posterior distribution after a fixed number of questions. We present a new non-adaptive policy, called the dyadic policy, show it is optimal among non-adaptive policies, and is within a factor of two of optimal among adaptive policies. This policy is quick to compute, its nonadaptive nature makes it easy to parallelize, and our bounds show it performs well even when compared with adaptive policies. We also study an adaptive greedy policy, which maximizes the one-step expected reduction in entropy, and show that it performs at least as well as the dyadic policy, offering greater query efficiency but reduced parallelism. Numerical experiments demonstrate that both procedures outperform a divide-and-conquer benchmark policy from the literature, called sequential bifurcation, and show how these procedures may be applied in a stylized computer vision problem.


Restricted Adaptivity in Stochastic Scheduling

We consider the stochastic scheduling problem of minimizing the expected...

Group Testing with Non-identical Infection Probabilities

We consider a zero-error probabilistic group testing problem where indiv...

The Importance of Non-Markovianity in Maximum State Entropy Exploration

In the maximum state entropy exploration framework, an agent interacts w...

How To Grade a Test Without Knowing the Answers --- A Bayesian Graphical Model for Adaptive Crowdsourcing and Aptitude Testing

We propose a new probabilistic graphical model that jointly models the d...

Beyond Adaptive Submodularity: Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio

We propose a new concept named adaptive submodularity ratio to study the...

Non-Adaptive Policies for 20 Questions Target Localization

The problem of target localization with noise is addressed. The target i...

Bayes-Optimal Entropy Pursuit for Active Choice-Based Preference Learning

We analyze the problem of learning a single user's preferences in an act...

Please sign up or login with your details

Forgot password? Click here to reset