Probabilistic Description Logics

02/27/2013
by   Jochen Heinsohn, et al.
0

On the one hand, classical terminological knowledge representation excludes the possibility of handling uncertain concept descriptions involving, e.g., "usually true" concept properties, generalized quantifiers, or exceptions. On the other hand, purely numerical approaches for handling uncertainty in general are unable to consider terminological knowledge. This paper presents the language ACP which is a probabilistic extension of terminological logics and aims at closing the gap between the two areas of research. We present the formal semantics underlying the language ALUP and introduce the probabilistic formalism that is based on classes of probabilities and is realized by means of probabilistic constraints. Besides inferring implicitly existent probabilistic relationships, the constraints guarantee terminological and probabilistic consistency. Altogether, the new language ALUP applies to domains where both term descriptions and uncertainty have to be handled.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro