Probabilistic Auto-Encoder

06/09/2020
by   Vanessa Böhm, et al.
0

We introduce the Probabilistic Auto-Encoder (PAE), a generative model with a lower dimensional latent space that is based on an Auto-Encoder which is interpreted probabilistically after training using a Normalizing Flow. The PAE combines the advantages of an Auto-Encoder, i.e. it is fast and easy to train and achieves small reconstruction error, with the desired properties of a generative model, such as high sample quality and good performance in downstream tasks. Compared to a VAE and its common variants, the PAE trains faster, reaches lower reconstruction error and achieves state of the art samples without parameter fine-tuning or annealing schemes. We demonstrate that the PAE is further a powerful model for performing the downstream tasks of outlier detection and probabilistic image reconstruction: 1) Starting from the Laplace approximation to the marginal likelihood, we identify a PAE-based outlier detection metric which achieves state of the art results in Out-of-Distribution detection outperforming other likelihood based estimators. 2) Using posterior analysis in the PAE latent space we perform high dimensional data inpainting and denoising with uncertainty quantification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset