Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks

02/20/2023
by   Arun Ganesh, et al.
0

We consider the problem of minimizing a non-convex objective while preserving the privacy of the examples in the training data. Building upon the previous variance-reduced algorithm SpiderBoost, we introduce a new framework that utilizes two different kinds of gradient oracles. The first kind of oracles can estimate the gradient of one point, and the second kind of oracles, less precise and more cost-effective, can estimate the gradient difference between two points. SpiderBoost uses the first kind periodically, once every few steps, while our framework proposes using the first oracle whenever the total drift has become large and relies on the second oracle otherwise. This new framework ensures the gradient estimations remain accurate all the time, resulting in improved rates for finding second-order stationary points. Moreover, we address a more challenging task of finding the global minima of a non-convex objective using the exponential mechanism. Our findings indicate that the regularized exponential mechanism can closely match previous empirical and population risk bounds, without requiring smoothness assumptions for algorithms with polynomial running time. Furthermore, by disregarding running time considerations, we show that the exponential mechanism can achieve a good population risk bound and provide a nearly matching lower bound.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset