Private and Rateless Adaptive Coded Matrix-Vector Multiplication

09/27/2019
by   Rawad Bitar, et al.
0

Edge computing is emerging as a new paradigm to allow processing data near the edge of the network, where the data is typically generated and collected. This enables critical computations at the edge in applications such as Internet of Things (IoT), in which an increasing number of devices (sensors, cameras, health monitoring devices, etc.) collect data that needs to be processed through computationally intensive algorithms with stringent reliability, security and latency constraints. Our key tool is the theory of coded computation, which advocates mixing data in computationally intensive tasks by employing erasure codes and offloading these tasks to other devices for computation. Coded computation is recently gaining interest, thanks to its higher reliability, smaller delay, and lower communication costs. In this paper, we develop a private and rateless adaptive coded computation (PRAC) algorithm for distributed matrix-vector multiplication by taking into account (i) the privacy requirements of IoT applications and devices, and (ii) the heterogeneous and time-varying resources of edge devices. We show that PRAC outperforms known secure coded computing methods when resources are heterogeneous. We provide theoretical guarantees on the performance of PRAC and its comparison to baselines. Moreover, we confirm our theoretical results through simulations and implementations on Android-based smartphones.

READ FULL TEXT
03/07/2021

Adaptive Coding for Matrix Multiplication at Edge Networks

Edge computing is emerging as a new paradigm to allow processing data at...
01/13/2018

Coded Cooperative Computation for Internet of Things

Cooperative computation is a promising approach for localized data proce...
08/15/2019

Secure Coded Cooperative Computation at the Heterogeneous Edge against Byzantine Attacks

Edge computing is emerging as a new paradigm to allow processing data at...
12/09/2020

Collaborative Coded Computation Offloading: An All-pay Auction Approach

As the amount of data collected for crowdsensing applications increases ...
10/18/2020

Joint Storage Allocation and Computation Design for Private Edge Computing

In recent years, edge computing (EC) has attracted great attention for i...
07/30/2021

An Edge-Based Resource Allocation Optimization for the Internet of Medical Things (IoMT)

As the number of Internet of Medical Things (IoMT) increases, the need f...
09/28/2021

Dynamics in Coded Edge Computing for IoT: A Fractional Evolutionary Game Approach

Recently, coded distributed computing (CDC), with advantages in intensiv...