Privacy-Protective-GAN for Face De-identification
Face de-identification has become increasingly important as the image sources are explosively growing and easily accessible. The advance of new face recognition techniques also arises people's concern regarding the privacy leakage. The mainstream pipelines of face de-identification are mostly based on the k-same framework, which bears critiques of low effectiveness and poor visual quality. In this paper, we propose a new framework called Privacy-Protective-GAN (PP-GAN) that adapts GAN with novel verificator and regulator modules specially designed for the face de-identification problem to ensure generating de-identified output with retained structure similarity according to a single input. We evaluate the proposed approach in terms of privacy protection, utility preservation, and structure similarity. Our approach not only outperforms existing face de-identification techniques but also provides a practical framework of adapting GAN with priors of domain knowledge.
READ FULL TEXT