Privacy-Preserving Image Classification Using ConvMixer with Adaptive Permutation Matrix

08/04/2022
by   Zheng Qi, et al.
0

In this paper, we propose a privacy-preserving image classification method using encrypted images under the use of the ConvMixer structure. Block-wise scrambled images, which are robust enough against various attacks, have been used for privacy-preserving image classification tasks, but the combined use of a classification network and an adaptation network is needed to reduce the influence of image encryption. However, images with a large size cannot be applied to the conventional method with an adaptation network because the adaptation network has so many parameters. Accordingly, we propose a novel method, which allows us not only to apply block-wise scrambled images to ConvMixer for both training and testing without the adaptation network, but also to provide a higher classification accuracy than conventional methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro