Principled Design and Implementation of Steerable Detectors

10/23/2018
by   Julien Fageot, et al.
0

We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown position and orientation. We propose a continuous-domain additive image model, where the analyzed image is the sum of the template and an isotropic background signal with self-similar isotropic power-spectrum. The method is able to learn an optimal steerable filter fulfilling the SNR criterion based on one single template and background pair, that therefore strongly responds to the template, while optimally decoupling from the background model. The proposed filter then allows for a fast detection process, with the unknown orientation estimation through the use of steerability properties. In practice, the implementation requires to discretize the continuous-domain formulation on polar grids, which is performed using radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset