Principal components analysis of regularly varying functions

12/07/2018
by   Piotr Kokoszka, et al.
0

The paper is concerned with asymptotic properties of the principal components analysis of functional data. The currently available results assume the existence of the fourth moment. We develop analogous results in a setting which does not require this assumption. Instead, we assume that the observed functions are regularly varying. We derive the asymptotic distribution of the sample covariance operator and of the sample functional principal components. We obtain a number of results on the convergence of moments and almost sure convergence. We apply the new theory to establish the consistency of the regression operator in a functional linear model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset